
Neural learning using orthogonal arrays

Adrian Stoics, Julian Blosiu
Center for Space Microelectronics l’ethnology, Jet Propulsion Laboratory

California Institute of Technology, Pasadena,CA91109, USA

and Brian Figie
Ballistic Missile Defense Organization, Washington, DC 20301

Abstract
The paper proposes the use of the orthogonal arrays for neural network learning. Learning can be seen

as a search for the neural weights that give an optimal network performance. The search/optimization
adopted here is inspired from Taguchi methods based on Orthogonal Arrays (a special set of Latin
Squares), which proved to be a powerful tool in robust design. In its most straightforward implementation
the search requires only a few steps, leading to fast neural learning. However the solution obtained in this
way is only in the vicinity of an optimum. Getting closer to the optimum can be done by making the search
adaptive, at the price of an increased number of iterations.

1. INTRODUCTION
There is a large area of real-world applications, including pattern recognition and intelligent sensor

fusion problems, for which neural networks (NN) have proved very efficient, largely due to their learning
capability. For a given NN architecture learning refers to modifications of the values of neuron weights,
which modulate signal transmission between interconnected neurons. Most learning algorithms determine
the weight modifications such as to optimize some cost function. The most commonly used cost function
is the sum of squared errors between current NN output and the desired (target) output, Thus, learning in
NN can be seen as a search process to find the weight values that generate the smallest cost.

Learning in NN can be a lengthy process. Traditional learning algorithms are based on numerical
methods that require a significant amount of iterations. Most popular learning methods are based on
Gradient Descent (GD) search/optimization. The classic cxarnple for such methods is the backpropagation
algorithm. Pure GD is a local search technique and will end up in the closest local minimum. Global
searches were also proposed for neural learning, in particular using Genetic Algorithms (GA). Both GD
and GA based neural learning are computational expensive, and hence slow. Thousands of iterations are
common for GD based learning, and hundreds of generations with hundreds of individuals in the
population are common for GA. I’his is impractical for real-time application systems, in which systems are
expected to quickly learn and adapt to their environments, and for which fast learning methods are in high
demand.

In this paper we propose the use of a global search mechanism, based on a modified Taguchi technique
for robust design. In the proposed approach weights modifications result from an iterative application of
robust design optimization using orthogonal arrays (OA) [Tag87]. This investigation was triggered by a
study showing that in some optimization problems OA outperform GA searches [Gold96]. Searches based
on OA share some of the nice characteristics of GA based searches: no derivatives have to be computed,
the algorithm is not too sensitive to starting conditions. Also, large numbers of variables can be handled
easily. For details on Taguchi methods and OA the reader is referred to [Tag87].

In a NN the weights are the equivalent of “parameters” in the robust design methodology. Several weight
values enter the network evalrraticm at one iteration step, and are associated with values of levels of the
parameters used in robust design. The neural network for which learning is to be performed gets
associated with an Orthogonal Array (OA), with the number of parameters equals the number of weights
of the NN. The interval containing the solution is gradually shrinking as the result of an iterative
algorithm.

11. IJ3ARNING ALGORIT1lM BASED ON ORTHOGONAL ARRAYS
To facilitate the understanding, the algorithm is explained in relation to a simple example, using the

NN illustrated in Figure 1. The network has 7 nodes and 13 weights. Each neuron calculates its output by
a weighted sum of its inputs, modulated by a sigmoidal nonlinearity. For example, output Y 1 of a neuron
in the hidden layer, is calculated as Y 1 = f(X 1 * WI +- X2* W4 + X3* W7), where f(x) = 1/(1 +e ‘x). The
outputs of the hidden layer, Y 1 , Y2, Y3 act as inputs for the output node, which produces an output
signal calculated as O = f(Yl*WIO + Y2*W1 1 + Y3*W12 + 1* W13), where f(x) = l/(l+e ‘x). The
network will learn an input-output dependency from input-output (1/0) examples shown Table 1. The
output shown is the target value.

x l w 1

%>”
W2 Wlo

$’3

Al<
Y2 w] 1 0

——
‘6

W7 W12 w13

X3 ‘8 Y3

\l In

Figure 1. Neural network with 13 weights (parameters)

Tabk 1. Input-output examples

Ilnput –

x1 x2 x3
0 0 0
0 0 1
010
011
1 0 0
Iol
I 1 0
1 1 1

. .- —---

olqlui. . ..—
0

0.28
0.33
0.32
0.37
0.26
0.31
0.30
0.35

.—
For example, the stopping condition

initialization

The algorithm can be expressed as follows:
Initialization: choose an OA with nlirnber OJ parameters =
mimber of u’eights.
Do unti[the stopping condition if satisfied:

Step 1. Generate a test set
Step 2. Evaluate a cost function for the test set
Ste[) 3. Evaluate the efJect oj each level on the cost florct ion
Step 4. h40dl~ each weight in the direction of the level that

pt-odliced least cost

; when the weight modification is less than a given value.

‘1’hc fact that the network has 13 weights (W 1 to W 13) determines the choice of an OA with 13 parameters.
In this case, an L27 orthogonal array was chosen [“1ag87], in which each parameter (weight) has 3 levels,
thus 3 weight values will be considered at each step of the search. 1.27 is illustt ated in Table 2.

“l’able 2. Orthogonal Array L27 with 13 Parameters (Weights) at I’hree I.evels Each

T e s t W1

1 1

2 1

3 1

4 $
5 1

6 1

7 1
8 1

9 1
10 2
11 2
12 2
13 2
14 2
15 2
16 2
17 2
18 2
19 2
2 0 3
21 3
2 2 3
2 3 3
24 3
2 5 3
2 6 3
27 3

W 2 W 3 W 4 W 5 W 6

1 1 1 1 1

1 1 1 2 2

1 1 1 3 3

2 2 2 1 1

2 2 2 2 2

2 2 2 3 3

3 3 3 1 1

3 3 3 2 2

3 3 3 3 3

1 2 3 1 2

1 2 3 2 3

1 2 3 3 1

2 3 1 1 2

2 3 1 2 3

2 3 1 3 1

3 1 2 1 2

3 1 2 2 3

3 1 2 3 1

1 3 2 1 3

1 3 2 2 1

1 3 2 3 2

2 3 3 1 3

2 1 3 2 1

2 1 3 3 2

3 2 1 1 3

3 2 1 2 1

3 2 1 3 2

W7 W8 W 9 Wlo Wll

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

1 2 2 2 3

2 3 3 3 1

3 1 1 1 2

1 3 3 3 2

2 1 1 1 3

3 2 2 2 1

3 1 2 3 1

1 2 3 1 2

2 3 1 2 3

3 2 3 1 3

1 3 1 2 1

2 1 2 3 2

3 3 1 2 2

1 1 2 3 3

2 2 3 1 1

2 1 3 2 1

3 2 1 3 2

1 3 2 1 3

2 2 1 3 3

3 3 2 1 1

1 1 3 2 2

2 3 2 1 2
3 1 3 2 3

1 2 1 3 1

W12 W13

1 1

2 2

3 3

3 3

1 1

2 2

2 2

3 3

1 1

2 3

3 1

1 2

1 2

2 3

3 1

3 1

1 2

2 3

3 2

1 3

2 1

2 1

3 2

1 3

1 3

2 1

3 2

Iterative steps
Step 1. Generate a set of tests (a “design of experiments“ in terms of robust design terminology).

The set of tests consist of a number of NN with different weights. Each NN simulated parametric run
is equivalent with an experimental test run. The number of NN equals the number of rows of the OA
(which indicates the number of experiments). The weights are obtained from the Orthogonal Array
by replacing the (indexed) level of each parameter (weight) with its current value in the search
interval.

Suppc)se that the search starts at the [-1 ,1] interval for all weights, The 3 levels (level 1,2, 3) in the OA
could be associated with the extremes and the middle of the search interval, {-1, O, 1}. Thus, we are
replacing the level number in Table 2 with the actual value of the weight at that level, which leads to Table
3. In this example, for weight WI, at the first iteration, level 1 from Table 2 (1” level of weight Wl) is
replaced by -1 as shown in Table 3, level 2 is replaced by O, and level 3 is replaced by 1.

Step 2. Evaluate a cost function for each network in the test set. For example, this could be the
sum of squared errors between the network output and target output value. The cost to be minimized
is the sum of cost functions for all networks.

For the first iteration the actual cost value for each NN simulation run (calculated as sum of squared
errors for the given 1/0 set) is shown in the last column in Table 3.

Step3. Evaluate the effect that each individual level had on the cost function. This is done by
summing the cost functions for the networks (experiments) in which that level was present.

Consider for example W 1. Level 1 (of W 1) enters the first 9 networks (experiments) of L27, see the Ist
column of Table 2. The cumulated effects of Level 1 of W 1 (E~,lW1) are given by the sum of costs for the
networks in which L] intervenes (costs are written in the last column in Table 3). Thus E[,lW1 = costl +
cost 2 + . . . cost9.

For this example, after the first iteration, the effect of each level value on the cost
[

15

f 10
~

55
g
a o

I
Figure 2.

Table 3,
Test

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

3

fz

~ 1

50

Figure 3.

■ Level 1

■ Leve12

~Leve13

1 2 3 4 5 6 7 8 9 10 11 12 13

Weights

Cost effects of levels 1,2,3 of the 13 weights after the 1“ iteration

The set of test for the first iteration: 27 NN with their particular weights
W I

-1
-1
.1
-1
-1
-1

-1

-1

-1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

W2
-1
-1
-1
0

0

0

1

1

1

-1

-1

-1

0

0

0

1

1

1

-1

-1

-1

0

0

0

1

1

1

W3
-1
-1
-1
0

0

0

1

1

1
0

0

0

1

1

1

-1

-1

-1

1

1

1

-1

-1

-1

0

0

0

W4
-1
-1
-1
0

0

0

1

1

1
1
1
1

-1

-1

-1

0

0

0

0

0

0

1

1

1

-1

-1

-1

W5
-1
0
1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

W 8

-1

0

1

-1

0

1

-1

0

1

0

1

-1

0

1

-1

0

1

-1

1

-1

0

1

-1

0

1

-1

0

W7
-1

0
1

-1

0

1

-1

0

1

1

-1

0

1

-1

0

1

-1

0

0

1

-1

0

1

-1

0

1

-1

W 8

-1

0

1

0

1

-1 ,

1

-1

0

-1

0

1

0

1

-1

1

-1

0

-1

0

1

0

1

-1

1

-1

0

W9
-1

0

1

0

1

-1

1

-1

0

0

1

-1

1

-1

0

-1

0

1

1

-1

0

-1

0

1

0

1
.1

Wlo

-1

0

1

0

1

-1

1

-1

0

1

-1

0

-1

0

1

0

1

-1

0

1

-1

1

-1

0

-1

0
1

■ Level 1

■ Level 2

❑ Level 3

1 2 3 4 5 6 7 8 9 10 11 12 13

W e i g h t s

Costeffects oflevels l,2,30fthe 13weights after the 2“” iteration

.- .,.1s synttreslzea In hlg. L.

Wll
-1

0

1

1

-1

0

0

1

-1

.1

0

1

1

-1

0

0

1

-1

-1

0

1

1

-1

0

0

1
.1

W12
-1

0

1

1

-1

0

0

1

-1

0

1

-1

-1

0

1

1

-1

0

1

-1

0

0

1

-1

-1

0

1

W13

-1

0

1

1

-1

0

0

1

-1

1

-1

0

0

1

-1

-1

0

1

0

1

-1

-1

0

1

1

-1

0

Step 4. Modify the values of each weight (shrink the search interval for the weight) in the
direction of the weight value that produced the minimum cost. From Figure 2, comparing the
effects of the3 levels of Wl, one notices that Leve13 of weight W1 produces minimum cost, therefore the
weights will move in its direction. I’he new levels of WI, inthe 2nd iteration, could be calculated as:

cost
0 . 1 9
0.26
2.97
2.18
0.28
0 . 0 7
0.84
1.75
0.45

1.2
0.01
0.35
0.07
0.76
0.27
0.08
1.12

0.1
0.26
1.47
0 .04
0 .39

0.1
0 .87
0 .12
0 .02
0 . 7 5

wl,ne~=wl

w],”’” =W;,i (w13-w12)/2

.

Wl, new=wl,
Figure 3 indicates the cost effect after the new weight value was calculated. Reducing the search

interval at half of its value and selecting to continue the search in the half that is closest to the level of the
weight that produced minimum cost is a straightforward approach to calculate the new weight levels. By
dividing the interval in 2 at each iteration, the search converges very quickly (the search interval for a
weight shrinks 3 orders of magnitude in 10 steps). Figure 4 illustrates the fast convergence to the target

value of a given cost, thus resulting in a quick learning process.

!--E””’
1 2 3 4 5 6 7 8 9 1 0

Herations

Figure4 Learning expressed asdecreasing modelingertor

III. D1SCUSS1ON
Shrinking the search interval in half at every step, narrows down the search space very rapidly. In the

particular way the decision is made as of which half to choose, only “wide valleys” in the cost function
space would guide the search to the optimal solution. Any “narrow valley” would be missed. A solution
would be to divide the search into more levels, increasing thus the size of the array, or shrinking at lower
pace, increasing thus the power of the search at the price of an increased number of iterations. To improve
the result a local search (e.g. gradient-based) may follow, e.g. as in [Gold96], where such a combination
outperforms Simulated Annealing and Genetic Algorithms.

Another aspect that needs further work is obtaining the appropriate orthogonal array for the problem
posed. Tables of Orthogonal Arrays are available, however they include some particular OA only. For the
general case of arbitrary size NN, a generative mechanism to produce the OA of appropriate size is needed.

IV. CONCLUS1ON
The paper proposed the use of orthogonal arrays to guide the search for weight values which minimize a

certain cost objective function for a neural network. The idea of applying orthogonal arrays to guide the
search appears promising as the search is global, done in parallel, in multiple points, similarly to searches
guided by genetic algorithms. In the straightforward application of the method (as in the example
illustrated here), the interval in which the solution is searched is reduced in half at every iteration, this
leading to very rapid convergence to an approximate solution (a shrink of 3 orders of magnitude every 10
iterations) which however is non-optimal. Modifications of the technique could get solutions closer to
optimal, at the price of an increased number of iterations.

V. ACKNOWLEDGEMENT
The research described in this paper was performed by the Center for Space Microelectronics

Technology, Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the
Ballistic Missile Defense Organization, through an agreement with the National Aeronautics and Space
Administration.

VI. REFERENCES
[Gold96] Gold, S. Comparison of Global Optimimtion Methods, ‘fR MI13 Dept. U. Mass., 1996
[Kota93] Kota, S. and Chiou, S. Use of orthogonal arrays in mechanism synthesis, Mechanical Machine
Theory, Vol. 28, pp 777-794, 1993
[Tag87] Taguchi, G. and Konishi, S. Ch-ihogorralArrays amiLinear Graphs, ASI Press, 1987

